
November 1st 2021 — Quantstamp Verified

Merit Circle

This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type DeFi Protocol

Auditors Jan Gorzny, Blockchain Researcher
Roman Rohleder, Research Engineer

Timeline 2021-10-28 through 2021-10-28

EVM Muir Glacier

Languages Solidity

Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification None

Documentation Quality Undetermined

Test Quality Undetermined

Source Code
Repository Commit

merit-liquidity-mining f558820

Total Issues 12 (9 Resolved)

High Risk Issues 4 (4 Resolved)

Medium Risk Issues 1 (0 Resolved)

Low Risk Issues 3 (2 Resolved)

Informational Risk Issues 1 (0 Resolved)

Undetermined Risk Issues 3 (3 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to
catastrophic impact for client’s
reputation or serious financial
implications for client and users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/Merit-Circle/merit-liquidity-mining/tree/bc1ef21b4e04f6a92949af70495e6c8b8f1da512
https://github.com/Merit-Circle/merit-liquidity-mining/commit/f558820be3da400638eb3a978245cdb126367ac4

Summary of Findings

Quantstamp has reviewed the Merit Liquidity Mining repository. Quantstamp found several issues which have all been addressed. Some issues were unavoidable due to the design of the

system and were acknowledged, while others were fixed. The code is accompanied by tests, but Quantstamp was unable to compute the coverage provided by those tests (due to the

project's use of Hardhat).

ID Description Severity Status

QSP-1 Write to Arbitrary Storage Location High Fixed

QSP-2 Use of Insecure Casting Operations High Fixed

QSP-3 Unchecked Return Values High Fixed

QSP-4 Flash Loan Vulnerability High Fixed

QSP-5 Maximum Approve Medium Acknowledged

QSP-6 Unlocked Pragma Low Fixed

QSP-7 Privileged Roles and Ownership Low Acknowledged

QSP-8 Missing Input Validation Low Fixed

QSP-9 Events Not Emitted on State Change Informational Acknowledged

QSP-10 Always CallingView.fetchData() getMultiplier(0) Undetermined Fixed

QSP-11 Gas Costs for Processing Arrays Could be Prohibitive Undetermined Fixed

QSP-12 Ignored Failed Transaction Undetermined Fixed

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.6.6• Slither

https://github.com/crytic/slither

Steps taken to run the tools:

Installed the Slither tool: Run Slither from the project directory:pip install slither-analyzer slither .

Findings

QSP-1 Write to Arbitrary Storage Location

Severity: High Risk

FixedStatus:

,File(s) affected: TimeLockPool.sol LiquidityMiningManager.sol

Related Issue(s): SWC-124

In parameter is not checked to be within the bounds of , allowing the caller to write the contents of

to an arbitrary storage location, by carefully crafting , when executing L75 of . Similarly, but in this case

performable by anyone and not just an address having the role, in is not checked to be within the bounds of

, allowing the caller to write the contents of to an arbitrary storage

location, by carefully crafting , when executing L71 of . See https://github.com/Arachnid/uscc/tree/master/submissions-2017/doughoyte for reference.

Description: LiquidityMiningManager.removePool() _poolId pools.length
pools[pools.length - 1] _poolId LiquidityMiningManager.sol

GOV_ROLE TimeLockPool.withdraw() _depositId
depositsOf[_msgSender()].length depositsOf[_msgSender()][depositsOf[_msgSender()].length - 1]

_depositId TimeLockPool.sol

Add a check for to be smaller than and smaller than in

and respectively.

Recommendation: _poolId pools.length _depositId depositsOf[_msgSender()].length
LiquidityMiningManager.removePool() TimeLockPool.withdraw()

The relevant checks have been added.Update:

QSP-2 Use of Insecure Casting Operations

Severity: High Risk

FixedStatus:

, ,File(s) affected: BasePool.sol TimeLockPool.sol AbstractRewards.sol

Related Issue(s): SWC-101

In , and the insecure primitive casting operations and are used. For sufficiently

large positive or negative values these casts may wrap around, without leading to a revert and therefore lead to unexpected behaviour.

Description: BasePool._mint() BasePool._burn() TimeLockPool.withdraw() int256() uint256()

In function of , a is cast to an variable, which may not be safe (Line 71).cumulativeRewardsOf AbstractRewards.sol UInt256 Int256

Replace the use of these insecure cast operations with for example their secure counterparts of .Recommendation: OpenZeppelins SafeCast library

The use of these insecure cast operations has been replaced by those of the library.Update: SafeCast

QSP-3 Unchecked Return Values

Severity: High Risk

FixedStatus:

, ,File(s) affected: TokenSaver.sol BasePool.sol LiquidityMiningManager.sol

Related Issue(s): SWC-104

The following function calls make a call to a function that returns a value, which however is not checked:Description:

• ,LiquidityMiningManager.sol
ignores the return value of (Line 62).addPool() approve()•

ignores the return value of (Line 116).distributeRewards() transferFrom()•

ignores the return value of (Line 129), (Line 122).distributeRewards() transfer() call()•

• :TokenSaver.sol
not checking return value of .saveToken() IERC20(_token).transfer()•

• :BasePool.sol
not checking return value of .claimRewards() rewardToken.transfer(_receiver, nonEscrowedRewardAmount);•

the ignores the return value of (Line 42).constructor approve()•

Add checks at above mentioned call sites, i.e. by wrapping the calls within corresponding statements or use the safe counterparts (i.e.

instead of), where applicable.

Recommendation: require(...) safeTransfer()
transfer()

The calls have been replaced by their variants.Update: safe

QSP-4 Flash Loan Vulnerability

Severity: High Risk

FixedStatus:

Oversimplifying, a is a way to atomically borrow some tokens, performs some actions using them, and repays the initial loan at the end of the transaction. A flash loan

is a way to use flash loans to extract an unfair amount of value from a system.

Description: flash loan

attack

In this system, since rewards are a function of a user's deposits, a quick injection of funds may entitle users to a larger share of rewards. Immediately withdrawing these funds may mean that

those rewards are taken from other participants and were not earned honestly.

Ensure that funds are locked for some minimum, non-trivial time period, or protect against flash loans using another method.Recommendation:

This has been addressed in the commit listed in this report (it was discovered prior to report compilation and resolved before an initial report was sent).Update:

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-124
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101
https://docs.openzeppelin.com/contracts/2.x/api/utils#SafeCast
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-104

QSP-5 Maximum Approve

Severity: Medium Risk

AcknowledgedStatus:

File(s) affected: LiquidityMiningManager.sol

Line 62 calls which means unlimited funds can be moved if something goes wrong.Description: approve(_poolContract, type(uint256).max);

Design this out, or make sure users are aware of this requirement.Recommendation:

This has been acknowledged; from the team: "Intended behavior. Doing the approval on every reward distribution would add significant gas costs. Contracts added as pools are trusted.

Additionally the does not hold significant funds at any time as those are always send back after every distribution. Also the distribution of rewards can only be

called by a trusted address."

Update:

LiquidityMiningManager

QSP-6 Unlocked Pragma

Severity: Low Risk

FixedStatus:

, , , , , , ,

, ,

File(s) affected: IAbstractRewards.sol TimeLockPool.sol IBasePool.sol View.sol LiquidityMiningManager.sol ITimeLock.sol AbstractRewards.sol,
BasePool.sol TokenSaver.sol TimeLockNonTransferablePool.sol

Related Issue(s): SWC-103

Every Solidity file specifies in the header a version number of the format . The caret () before the version number implies an unlocked pragma,

meaning that the compiler will use the specified version , hence the term "unlocked".

Description: pragma solidity (^)0.4.* ^
and above

For consistency and to prevent unexpected behavior in the future, it is recommended to remove the caret to lock the file onto a specific Solidity version.Recommendation:

The pragma has been locked.Update:

QSP-7 Privileged Roles and Ownership

Severity: Low Risk

AcknowledgedStatus:

, , ,File(s) affected: LiquidityMiningManager.sol TimeLockPool.sol TimeLockNonTransferablePool.sol BasePool.sol

Certain contracts have special roles, which provide certain addresses with privileged roles. Such roles may pose a risk to end-users.Description:

The owner of the or contracts may perform the following privileged actions:TimeLockPool.sol TimeLockNonTransferablePool.sol

1. Give or revoke the role of to any arbitrary address.TOKEN_SAVER_ROLE

2. Call , thereby transferring an arbitrary amount of an arbitrary token from the current contract to an arbitrary address.saveToken()

3. Renounce ownership, by calling , thereby preventing the change of the currently set role.renounceOwnership() TOKEN_SAVER_ROLE

4. Transfer ownership (the role of) to an arbitrary address.DEFAULT_ADMIN_ROLE

The owner of the contract may perform the following privileged actions:LiquidityMiningManager.sol

1. Give or revoke the role of to any arbitrary address.TOKEN_SAVER_ROLE

2. Call , thereby transferring an arbitrary amount of an arbitrary token of the contract to an arbitrary address.saveToken() LiquidityMiningManager.sol

3. Give or revoke the role of to any arbitrary address.GOV_ROLE

4. Add or remove pools, change pool weights or , by calling , , and respectively.rewardPerSecond addPool() removePool() adjustWeight() setRewardPerSecond()

5. Give or revoke the role of to any arbitrary address.REWARD_DISTRIBUTOR_ROLE

6. Distribute rewards by calling distributeRewards()`.

7. Renounce ownership, by calling thereby preventing the change of the currently set , and
roles.

renounceOwnership(), TOKEN_SAVER_ROLE GOV_ROLE
REWARD_DISTRIBUTOR_ROLE

8. Transfer ownership (the role of) to an arbitrary address.DEFAULT_ADMIN_ROLE

Note: As functions , and call , which is only callable by a reward distributor role holding account, it entails that the

holding account will also hold the role of .

addPool() removePool() adjustWeight() distributeRewards()
GOV_ROLE REWARD_DISTRIBUTOR_ROLE

Clarify the impact of these privileged actions to the end-users via publicly facing documentation.Recommendation:

This issue has been acknowledged. From the team: "Privileged roles will be documented in public facing documentation".Update:

QSP-8 Missing Input Validation

Severity: Low Risk

FixedStatus:

, , , ,File(s) affected: View.sol LiquidityMiningManager.sol AbstractRewards.sol TimeLockPool.sol BasePool.sol

It is important to validate inputs, even if they only come from trusted addresses, to avoid human error. The following functions do not have a proper validation of input parameters:Description:

1. does not check that is not the zero address, thus neither does the constructors of and
.

BasePool.constructor() _depositToken TimeLockPool.sol
TimeLockNonTransferablePool.sol

2. does not check that parameters and are different from .View.constructor() _liquidityMiningManager _escrowPool address(0)

3. does not check that parameters and are different from .LiquidityMiningManager.constructor() _reward _rewardSource address(0)

4. does not check that parameter is different from or parameter is different from zero.LiquidityMiningManager.addPool() _poolContract address(0) _weight

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103

5. does not check that parameter is smaller than or that parameter
is non-zero.

LiquidityMiningManager.adjustWeight() _poolId LiquidityMiningManager.pools.length
_newWeight

6. does not check that parameters and are different from .AbstractRewards.constructor getSharesOf_ getTotalShares_ address(0)

7. does not check that parameter is different from .AbstractRewards._prepareCollect() _account address(0)

8. does not check that parameters and are different from or is non-zero.AbstractRewards._correctPointsForTransfer() _from _to address(0) _shares

9. does not check that parameter is different from or _shares is non-zero.AbstractRewards._correctPoints() _account address(0)

10. does not check that parameter is greater than (10min).TimeLockPool.constructor() _maxLockDuration MIN_LOCK_DURATION

11. does not check that parameters and are non-zero or that parameter is different from .TimeLockPool.deposit() _amount _duration _receiver address(0)

12. does not check that parameter is within , or that parameter is different from
.

TimeLockPool.withdraw() _depositId depositsOf[_msgSender()].length _receiver
address(0)

Check that the values are not the obviously incorrect values, or clarify that those values are acceptable.Recommendation:

Updates:Update:

1. Fixed.

2. Acknowledged: " contract is only used as an easy way to fetch data. When the addresses in the constructor are incorrect it will simply not work. No need to fix
and increase gas const on deploy."

View.sol

3. Fixed.

4. Fixed/acknowledged: "Pool contract now checked when adding pool. Being able to add a pool at zero weight is intended."

5. Fixed/acknowledged: "Existence of pool is now checked, Being able to set a pools weight to 0 is intended."

6. False positive (fixed) / acknowledged: " and are not of the type address. They are functions. The only contract directly inheriting from
which properly passes and to the constructor.

getSharesOf_ getTotalShares_
AbtractRewards balanceOf totalSupply

7. False positive (fixed) / acknowledged: " is only called in and uses as the account parameter. Which can never
be . Additionally passing would not be an issue. Doing a check for would needlessly waste gas."

_prepareCollect BasePool.claimRewards _msgSender()
address(0) address(0) address(0)

8. Acknowledged: "Future inheriting contracts should be able to use as they see fit. example burning tokens to send them to . In the current
situation from can never be as the OpenZeppelin token implementation prevents transfers from/to those addresses."

address(0) address(0)
address(0)

9. Acknowledged: " is like any other address. Correcting points for that address would not cause any issues. Also and in the OpenZeppelin token
implementation already catch the zero address.

address(0) _mint _burn

10. Fixed.

11. Fixed: " now checked. is mutated to be above 0 when doing , OpenZeppelin ERC20
prevents mint to account ."

_amount _duration duration = duration.max(MIN_LOCK_DURATION); _mint
address(0)

12. Fixed: "Deposit length now being checked. If users explicitly want to burn their rewards that's fine. But reward burning will be prevented by the MC token as it doesn't
allow transfers to ."address(0)

QSP-9 Events Not Emitted on State Change

Severity: Informational

AcknowledgedStatus:

File(s) affected: AbstractRewards.sol

An event should always be emitted when a state change is performed in order to facilitate smart contract monitoring by other systems which want to integrate with the smart

contract. This is not the case for the functions:

Description:

1. does not emit any event upon a successful change of the state variables and
.

AbstractRewards._correctPointsForTransfer() pointsCorrection[_from]
pointsCorrection[_to]

2. does not emit any event upon a successful change of the state variable .AbstractRewards._correctPoints() pointsCorrection[_account]

Emit an event in the aforementioned functions.Recommendation:

This issue has been acknowledged. From the team: "Point correction is only used internally inside the contract to track rewards. Any function that does it already emits relevant events.

No need for additional gas usage to emit event."

Update:

QSP-10 Always CallingView.fetchData() getMultiplier(0)

Severity: Undetermined

FixedStatus:

File(s) affected: View.sol

In the field of the Deposit structures in L80 and L107 are set with

and . As is used it will always result in zero, always

returning the same multiplier .

Description: View.fetchData() multiplier multiplier: poolContract.getMultiplier(deposit.end -
deposit.end) multiplier: escrowPool.getMultiplier(deposit.end - deposit.end) deposit.end - deposit.end

1e18

To clarify if this is intended behaviour or if rather should have been used.Recommendation: deposit.end - deposit.start

This has been resolved by using as suggested.Update: deposit.end - deposit.start

QSP-11 Gas Costs for Processing Arrays Could be Prohibitive

Severity: Undetermined

FixedStatus:

, ,File(s) affected: View.sol TimeLockPool.sol LiquidityMiningManager.sol

Related Issue(s): SWC-128

In and a for-loop is used to iterate over the pools returned by

. Similarly, , which is user-controllable through deposits and iterated over in

. For sufficiently large arrays, processing over these arrays could run out of gas.

Description: View.fetchData() LiquidityMiningManager.distributeRewards()
liquidityMiningManager.getPools() TimeLockPool.depositsOf
TimeLockPool.getTotalDeposit()

Consider adding a check on the current array length, i.e. in and , to prevent arrays/number of

pools and deposits larger than a set maximum being processed. This maximum can be determined by performing gas analysis.

Recommendation: pool LiquidityMiningManager.addPool() TimeLockPool.deposit()

This has been fixed and acknowledged. From the team: "Limited pool count in to 10 which would in current conditions would allow more than 1M gas to be consumed per pool.

deposits is only used from non contracts as a view method which allow much higher gas usage generally. Additionally it is not mission critical but more of an utility."

Update:

getTotal

QSP-12 Ignored Failed Transaction

Severity: Undetermined

FixedStatus:

File(s) affected: LiquidityMiningManager.sol

There is a comment on line 121. The effects of ignoring a failed transaction is not clear.Description: ignore tx failing

Exploit Scenario:

Handle a failed transaction or clarify the behaviour when this happens.Recommendation:

The issue has been resolved by describing the rationale of ignoring the failed transaction. Added comment: "Ignore tx failing to prevent a single pool from halting reward distribution".Update:

Automated Analyses

Slither

Slither reported many issues, most of which are false positives or have been placed into other parts of this report. The reentrancy it reported is replicated below (as it does

not appear elsewhere), and only concerns the function, which is only callable by an account with the role. Since this role is

assumed to be trusted (see QSP-7), these are false positives.

distributeRewards REWARD_DISTRIBUTOR_ROLE

Reentrancy in LiquidityMiningManager.addPool(address,uint256) (contracts/LiquidityMiningManager.sol#48-65):
External calls:
- distributeRewards() (contracts/LiquidityMiningManager.sol#49)

- reward.transferFrom(rewardSource,address(this),totalRewardAmount) (contracts/LiquidityMiningManager.sol#116)
- address(pool.poolContract).call(abi.encodeWithSelector(pool.poolContract.distributeRewards.selector,poolRewardAmount)) (contracts/LiquidityMiningManager.sol#122)
- reward.transfer(rewardSource,leftOverReward) (contracts/LiquidityMiningManager.sol#129)

State variables written after the call(s):
- pools.push(Pool(IBasePool(_poolContract),_weight)) (contracts/LiquidityMiningManager.sol#52-55)
- totalWeight += _weight (contracts/LiquidityMiningManager.sol#59)

Reentrancy in LiquidityMiningManager.adjustWeight(uint256,uint256) (contracts/LiquidityMiningManager.sol#82-92):
External calls:
- distributeRewards() (contracts/LiquidityMiningManager.sol#83)

- reward.transferFrom(rewardSource,address(this),totalRewardAmount) (contracts/LiquidityMiningManager.sol#116)
- address(pool.poolContract).call(abi.encodeWithSelector(pool.poolContract.distributeRewards.selector,poolRewardAmount)) (contracts/LiquidityMiningManager.sol#122)
- reward.transfer(rewardSource,leftOverReward) (contracts/LiquidityMiningManager.sol#129)

State variables written after the call(s):
- pool.weight = _newWeight (contracts/LiquidityMiningManager.sol#89)
- totalWeight -= pool.weight (contracts/LiquidityMiningManager.sol#86)
- totalWeight += _newWeight (contracts/LiquidityMiningManager.sol#87)

Reentrancy in LiquidityMiningManager.removePool(uint256) (contracts/LiquidityMiningManager.sol#67-80):
External calls:
- distributeRewards() (contracts/LiquidityMiningManager.sol#68)

- reward.transferFrom(rewardSource,address(this),totalRewardAmount) (contracts/LiquidityMiningManager.sol#116)
- address(pool.poolContract).call(abi.encodeWithSelector(pool.poolContract.distributeRewards.selector,poolRewardAmount)) (contracts/LiquidityMiningManager.sol#122)
- reward.transfer(rewardSource,leftOverReward) (contracts/LiquidityMiningManager.sol#129)

State variables written after the call(s):
- pools[_poolId] = pools[pools.length - 1] (contracts/LiquidityMiningManager.sol#75)
- pools.pop() (contracts/LiquidityMiningManager.sol#76)
- totalWeight -= pools[_poolId].weight (contracts/LiquidityMiningManager.sol#72)

Code Documentation

1. The NatSpec comment for mentions it reverts if if the total supply is 0, however it reverts if shares is zero. fixed.AbstractRewards._distributeRewards() Update:

2. The NatSpec comment for mentions it emits , however it emits . fixed.AbstractRewards._distributeRewards() FundsDistributed RewardsDistributed Update:

3. The revert message for has a typo. Instead of share "suppy" it should be share "supply". fixed.AbstractRewards._distributeRewards() Update:

Adherence to Best Practices

1. For improved readability to have a maximum line length of 79 or 99. Therefore L28, L33 and L122 of , L17 of
, L36, L41, L42, L68 and L71 of , L8, L11, L15, L16, L17, L65, L71 and L121 of , L23 and L80

of , L11 and L22 of , which exceed these limits, should be shortened accordingly.

it is recommended LiquidityMiningManager.sol
TimeLockNonTransferablePool.sol TimeLockPool.sol AbstractRewards.sol

BasePool.sol TokenSaver.sol

2. To prevent confusion it is recommended to avoid re-using the same/similar names for different variables, functions or structures. Contract defines structures
and , which however are different from the structures in and from and should therefore

be renamed.

View.sol
Deposit Pool Deposit TimeLockPool.sol Pool LiquidityMiningManager.sol

3. The state variable has the immutable modifier and is immediately initialized at declaration. Consider replacing the immutable
modifier with as it is more in line with the immediate initialization to a constant value.

TimeLockPool.MIN_LOCK_DURATION
constant,

4. It is discouraged to use uncommented magic constants in code, as their role may be non-apparent and using such constants without having them globally defined may
lead to inconsistencies in future changes. In L34 and L68 of and L58, L68 and L83 of is used. Consider declaring it a constant
and comment it, i.e., in and replace the corresponding uses.

BasePool.sol TimeLockPool.sol 1e18
BasePool.sol

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-128
https://docs.soliditylang.org/en/latest/style-guide.html#maximum-line-length

Test Results

Test Suite Results

BasePool
distributeRewards

✓ Should fail when there are no shares
✓ Should fail when tokens are not approved (285ms)
✓ Should work (266ms)

claimRewards
✓ First claim single holder (263ms)
✓ Claim multiple holders (440ms)
✓ Multiple claims, distribution and holders (588ms)
✓ Zero escrow (234ms)
✓ Full escrow (472ms)

LiquidityMiningManager
Adding pools

✓ Adding a single pool (59ms)
✓ Adding multiple pools (94ms)
✓ Adding a pool twice should fail (46ms)
✓ Adding a pool from a non gov address should fail

Removing pools
✓ Removing last pool in list (94ms)
✓ Removing a pool in the beginning of the list (82ms)
✓ Removing all pools (329ms)
✓ Removing a pool from a non gov address should fail

Distributing rewards
✓ Distributing rewards from an address which does not have the REWARD_DISTRIBUTOR_ROLE
✓ Distributing zero rewards
✓ Should return any excess rewards (601ms)
✓ Should work (531ms)

Adjusting weight
✓ Adjust weight up
✓ Adjust weight down (68ms)
✓ Should fail from non gov address

Setting reward per second
✓ Should work
✓ Should fail from non gov address

TimeLockNonTransferablePool
✓ transfer
✓ transferFrom

TimeLockPool
deposit

✓ Depositing with no lock should lock it for 10 minutes to prevent flashloans (171ms)
✓ Deposit with no lock (197ms)
✓ Trying to lock for longer than max duration should lock for max duration (187ms)
✓ Multiple deposits (352ms)
✓ Should fail when transfer fails (45ms)

withdraw
✓ Withdraw before expiry should fail
✓ Should work (159ms)

TokenSaver
saveToken

✓ Should fail when called fron non whitelised address
✓ Should work (112ms)

36 passing (10s)

Code Coverage

Quantstamp was unable to compute code coverage for the tests, due to the project's use of hardhat.

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

32e20dc9c7834eb1abcb11483bc16b9467e6329d27fa4ea0f310bfdc854052c2 ./contracts/LiquidityMiningManager.sol

65d66fa08c13c10901a59a4c3c19d9c1075396715491e8b4f48d659bf5dd77c5 ./contracts/TimeLockNonTransferablePool.sol

cc36e4786ebc928814354f1cc6d43bac72b48c4d9102678daaf55f9f8dc263c7 ./contracts/TimeLockPool.sol

780b387f9c2639481484774bd6addf11a89359936fe17e06b237cc18077f02e7 ./contracts/View.sol

44129dc0fb197cdc38891d05da506588492794f89f6de83902a96f3b6d621281 ./contracts/test/TestBasePool.sol

34b79e96ba58a220965725b4f4c3b3350f06ef6330242b07e5ec80101cc20106 ./contracts/test/TestFaucetToken.sol

dc79250ac1a086a86e43daa8d7e5a0833f01013ea94298b933c1f6165b56872a ./contracts/test/TestToken.sol

e4d54710f7d465f7b264f10c571373c078dce11e2c677bf334220fcd97f68d0b ./contracts/interfaces/IAbstractRewards.sol

7490e734dccc420440f73fda9faa95500e8a56c64ed38535788cd9a78bde4440 ./contracts/interfaces/IBasePool.sol

6ed743f409d47a1fd57d6cfd82c63a9d4780e18e92718eef0822c19eb47492ae ./contracts/interfaces/ITimeLockPool.sol

bbc65efeb36fe3b5674fb7774270323aa9c1ad9a6d1517a206bdcfed648b3eea ./contracts/base/AbstractRewards.sol

2d466b469fd6079fdca2305b8716320d460c40e2060a6dc081f76bd0b223eab7 ./contracts/base/BasePool.sol

4df1f949bfcddf7305dfba1ef6021842105ebd1c793a5c440217af60f69743b2 ./contracts/base/TokenSaver.sol

Tests

9f0de342cf41c8b92dbb62b0ac1f38b2c21d0f49772c6a642a0203812e50429d ./test/BasePool.ts

f6f9a85335a9e82dabac2fbf4f3701ba117dc1eb10403e2a5fc4ad8278ea5372 ./test/LiquidityMiningManager.ts

fcf0835789d668fb0c08cef4bec813750973efea1752f3cb0bd210f3f08a9919 ./test/TimeLockNonTransferablePool.ts

0d8fdac6533eb46dc25a37a4f1e74a3d78645ed1a638de370a84db3ba5b6fd2b ./test/TimeLockPool.ts

a837563927a505dbd90499489111b95898caefdcf292df9865d7202e1602e65c ./test/TokenSaver.ts

Changelog

2021-10-28 - Initial report []• bc1ef21

2021-10-31 - Revised report []• f558820

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Merit Circle Audit

